Establishing Quaternary as a formal international Period/System

Despite being the most widely used unit in field mapping and having the greatest number of active researchers, the interval known as Quaternary is unique among the chronostratigraphic subdivisions of the Geological Time Scale (GTS) in having the most controversial definition and rank. After more than 100 years of debate, the base of the Quaternary is now widely recognized at ~2.6 Ma, marking a dramatic and so-far irreversible shift to the ice-age-dominated world of oscillating glacial advances over the northern continents. In 2007, both INQUA and ICS proposed that the Quaternary be established as a System of the Cenozoic Erathem, with its base defined by the GSSP of the Gelasian Stage. To maintain strict hierarchy in the GTS, it is proposed that the base of the Pleistocene Series be lowered to coincide with the Gelasian Stage GSSP at ~2.6 Ma.

Overview

The Cenozoic Era currently has two ratified international periods/systems defined by global boundary stratotype sections and points (GSSPs). The Paleogene Period/System was ratified in 1991 by the International Union of Geological Sciences (IUGS) upon the acceptance of the basal-Danian GSSP. The Neogene Period/System was ratified in 1996. The interval known as Quaternary had been left undefined and without rank since 1983 upon the acceptance by IUGS of the GSSP that currently defines the base of the Pleistocene Series (base of Calabrian Stage in Mediterranean usage, ca. 1.8 Ma).

The International Union of Quaternary Research (INQUA; under the International Council for Science) and its component national members have unanimously agreed that the “Quaternary Period spans the last 2.6 million years of Earth’s history” (www.inqua.tcd.ie). It begins with the first widespread continental glaciation that created deposits historically mapped as “Quaternary” and coincides with the base of the Gelasian Stage. In 2005, the International Commission of Stratigraphy (ICS) unanimously approved recognition of the Quaternary as a formal chronostratigraphic unit with its base at the Gelasian GSSP.

The ICS submitted a resolution in May 2007 to IUGS for the establishment of the Quaternary as a formal international chronostratigraphic unit with a GSSP will be discussed further at the 2008 International Geological Congress (IGC).

The common association of Quaternary with the “Ice Ages” created another problem, because the onset of these continental glaciations is now known, from ice-rafted debris in the Greenland Sea, to have begun much earlier, in the mid-Paleogene, around 44 Ma (Tripati et al., 2008).
In 1983, in a controversial decision, the base-Pleistocene GSSP was ratified at Vrica, Italy, near the top of the Olduvai magnetic subchron, but the decision "was isolated from other more or less related problems, such as ... status of the Quaternary" (Aguirre and Pasini, 1985). The Gelasian Stage was later created (ratified in 1996 at the 30th International Geological Congress, Beijing) to fill the "gap" between this GSSP and the "traditional" span of the Piacenzian Stage of the Pliocene Series (Rio et al., 1998). However, when the base-Pleistocene GSSP was established, the timing of the initial major glaciation of the Northern Hemisphere was not well understood. The base of the Quaternary has now been established from the recognition and precise dating of glacial-driven major oxygen-isotope excursions, of pronounced eustatic lowstands on continental shelves caused by the formation of massive glacial sheets, of the onset of the main loess deposition in China, of the lowest till deposits in central USA, and of other traditional "Quaternary" deposits (e.g., Balco et al., 2005). The conditions that led to this initial Ice Age probably included blocking of exchange of tropical Atlantic-Pacific waters by the formation of the Isthmus of Panama, among other tectonic and atmospheric-oceanic factors. A side effect was the emergence of bipedal humanoids; and this new generation of Lucy and her brothers has been called "Children of the Ice Age" (e.g., Stanley, 1996).

The base of the current Gelasian Stage was placed at a slightly younger level (warm interval MIS 103; age 2.59 Ma), but its association with the magnetic reversal at the onset of the Matuyama reversed-polarity Chron enables an unambiguous and precise global marker. Therefore, for expediency and unambiguous high-precision correlation between continental and oceanic deposits, the Quaternary System is being defined with this established Gelasian GSSP.

Further details on the base of the Quaternary are given by Head et al. (in this Episodes volume).

Figure 1 Selected versions of Cenozoic subdivisions and nomenclature for Oligocene-Holocene interval.

(a) 1894—The forerunner to the ICS proposed that the Cenozoic/Tertiary Era be subdivided into Nummulitique (Paleocene-Eocene-Oligocene) and Neogenitque (Miocene-Pliocene-Pleistocene-Holocene); with Quaternary or Diluvium as “general synonyms” for Pleistocene (Renevier et al., 1894). The Sixth International Geological Congress (IGC) published the document, but no formal decision was made.

(b) 1900—A proposal was submitted to the Eighth IGC to subdivide Cenozoic into Tertiary and Modern periods, with Primary and Secondary retained as synonyms for the Paleozoic and Mesozoic. No formal decision was made.

(c) 1996—IUGS had ratified the Paleogene and Neogene as period/systems. During the IUGS acceptance of the Pleistocene in 1985, the Quaternary had been left without rank. INQUA defined the Quaternary as spanning the past 2.6 myr. This was the status indicated in Geologic Time Scale 2004.

(d) 2005—The ICS proposes to IUGS to instate the Quaternary as a sub-era beginning with the first major “Ice Age”—the 2.6 Ma age of the earliest major continental glaciation obtained by INQUA. Under that proposal, the Tertiary would be an informal sub-era spanning the lower 95% of the Cenozoic. This proposal, which summarized in Aubry et al. (2005), is rejected by IUGS.

(e) 2007—The ICS and INQUA jointly propose to IUGS to insert the Quaternary as a period/system using the 2.6-myr definition (base of Gelasian) voted unanimously by INQUA in 2007. To retain a hierarchical scale, the Gelasian stage is shifted to the Pleistocene. This proposal of ICS and INQUA is pending for the International Geological Congress in 2008.

In 1983, in a controversial decision, the base-Pleistocene GSSP was ratified at Vrica, Italy, near the top of the Olduvai magnetic subchron, but the decision “was isolated from other more or less related problems, such as ... status of the Quaternary” (Aguirre and Pasini, 1985). The Gelasian Stage was later created (ratified in 1996 at the 30th International Geological Congress, Beijing) to fill the “gap” between this GSSP and the “traditional” span of the Piacenzian Stage of the Pliocene Series (Rio et al., 1998). However, when the base-Pleistocene GSSP was established, the timing of the initial major glaciation of the Northern Hemisphere was not well understood.

The base of the Quaternary has now been established from the recognition and precise dating of glacial-driven major oxygen-isotope excursions, of pronounced eustatic lowstands on continental shelves caused by the formation of massive glacial sheets, of the onset of the main loess deposition in China, of the lowest till deposits in central USA, and of other traditional “Quaternary” deposits (Figure 2). The evidence accumulated during the past two decades is uncontroversial—at approximately 2.6 or 2.7 Ma there was a dramatic and so-far irreversible shift to the ice-age-dominated world of oscillating glacial advances over the northern continents. This earliest major glaciation produced a major global sea-level lowstand at 2.7 Ma (major sequence boundary “Ge1” of Hardenbol et al., 1998) that coincides with cold oxygen-isotope stage 110, and deposited the Atlanta glacial till in Missouri (e.g., Balco et al., 2005) among other widespread glacial evidence. There was also a surge in ice-rafted debris in the northern oceans, and the establishment of the modern patterns of deep-sea circulation (e.g., Haug et al., 2005; Bartoli et al., 2005). The conditions that led to this initial Ice Age probably included blocking of exchange of tropical Atlantic-Pacific waters by the formation of the Isthmus of Panama, among other tectonic and atmospheric-oceanic factors. A side effect was the emergence of bipedal humanoids; and this new generation of Lucy and her brothers has been called “Children of the Ice Age” (e.g., Stanley, 1996).

The base of the current Gelasian Stage was placed at a slightly younger level (warm interval MIS 103; age 2.59 Ma), but its association with the magnetic reversal at the onset of the Matuyama reversed-polarity Chron enables an unambiguous and precise global marker. Therefore, for expediency and unambiguous high-precision correlation between continental and oceanic deposits, the Quaternary System is being defined with this established Gelasian GSSP.

Further details on the base of the Quaternary are given by Head et al. (in this Episodes volume).
Lowering of the Pleistocene base

Thus, the onset of the Quaternary is nearly 800,000 years prior to the placement of the base-Pleistocene GSSP (ca. 1.8 Ma) at the level when certain cooler-water marine fauna enter the Mediterranean (Aguirre and Pasnini, 1985). When this base-Pleistocene GSSP was established in 1983, there was inconclusive global evidence about the age of the earliest Quaternary glaciations. Therefore, to rectify the offset of Quaternary (as used by INQUA and its constituent international committees) and the 1983-version of the Pleistocene Epoch/Series, the ICS and INQUA agreed that the Gelasian Stage should be transferred to the Pleistocene, thereby enabling a Quaternary Period/System to be established within the Cenozoic (Figure 3). This also brings the lowered Pleistocene into better accord with the 1948 decision by the International Geological Congress Council that the Pleistocene should include the full suite of Miocene through Holocene epochs. Usage of “Neogene” by marine stratigraphers customarily includes the upper Neogene and to adjust the lower boundary of the Neogene System to coincide with this new Quaternary Period/System.

Neogene and Tertiary

The period/system that precedes the Quaternary is the internationally ratified Neogene. The original “Neogen” (“new”, “clan/birth”) Stufe” of Moritz Hörnes was introduced in 1853/1864 to differentiate the younger molluscan fauna of the Vienna Basin from those of the Eocene (sensu Lyell, 1833). According to this division of the Molasse Group, the Neogene strata also included the “Knochen-Höhlen und der Löss” or glacial-derived deposits that are typical of “Quaternary” (see extended discussion by Lourens et al., 2004, and by Walsh, in press). Usage of “Neogene” by marine stratigraphers customarily includes the full suite of Miocene through Holocene epochs.

It had been recommended by Aubry et al. (2005) to establish separate Cenozoic divisions for oceanic and for continental deposits. In their scheme, the international Neogene and Paleogene periods/systems would have a parallel continental-based “sub-era” classification of the Quaternary (with its base at ca. 2.6 Ma; and offset from the marine-based Pleistocene definition) and a lengthy informal “Tertiary”. This proposed duality, which would allow land-based and marine-based earth scientists to retain their own traditional schemes, was accepted by ICS in 2005 (12 Yes, 5 No = 70% Yes). However, the IUGS rejected this dichotomy proposal for two reasons. First, the IUGS was reluctant to establish a new chronostatigraphic unit (“sub-era”), and second, they ruled that any chronostratigraphic scale (hence, usage of Quaternary) must be hierarchical — the base of a higher-ranked unit must coincide with bases of all lower-ranked units, such as series/epochs. IUGS also emphasized that ICS must work with INQUA on an acceptable usage of Quaternary. The Neogene and Paleogene are ratified international periods defined by GSSPs, and INQUA was unwavering in its scientific definition of Quaternary and request that it be a period in Earth’s history. Therefore, the preferred solution (82% Yes by ICS) was to simultaneously insert the Quaternary as a period/system that truncated the upper Neogene and to adjust the lower boundary of the Pleistocene Epoch/Series to coincide with this new Quaternary Period/System.

The term “Tertiary” is an informal grouping for the Neogene and Paleogene periods, and encompasses over 95% of the Cenozoic. As
such, it is much too broad to be a useful subdivision of the Cenozoic, unless stratigraphic evidence does not allow placement of a unit or event into the international-defined Neogene or Paleogene systems.

Acknowledgements

 Portions of this review were extracted from the joint ICS-IUGS-INQUA task group report on Quaternary (2005), the ICS submission to IGUS requesting ratification of Quaternary as a Period (2007), extracts from historical documents in a presentation by Gian Battista Vai (2006), and from chapters and contributions to the ICS booklet “A Concise Geologic Time Scale” (Ogg et al., coordinators; 2008).

References

James G. Ogg has served as Secretary-General of the International Commission on Stratigraphy since 2000. As part of this role, he was a co-compiler of the Geologic Time Scale 2004 (Cambridge University Press, ca. 500 pages), and guided the development of the TimeScale Creator databases and visualization system (freely available at www.stratigraphy.org). James Ogg has served on nearly a dozen ocean drilling legs to explore the Mesozoic and early Cenozoic history of the Pacific, Atlantic and Indian Oceans.

Brad Pillans is a Professorial Fellow in the Research School of Earth Sciences at The Australian National University where he runs a paleomagnetic laboratory. From 1983 to 1993 he was lecturer in Geology at Victoria University of Wellington, New Zealand. He is President of the INQUA Stratigraphy & Chronology Commission and Chair of the ICS Working Group on the Lower-Middle Pleistocene Boundary. His research interests include geomorphology, Quaternary stratigraphy and dating methods.

Selected On-Line References

Quaternary Subcommission: www.quaternary.stratigraphy.org.uk. Detailed inter-regional chart, status of Quaternary divisions, PDFs of major articles, and other information.
INQUA, the International Union for Quaternary Research (a full Science Union member of the International Council for Science): www.inqua.tcd.ie.