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The table provides a correlation of chronostratigraphical subdivisions of late Cenozoic geological time,
spanning the last 2.7 million years. The formal division of the Quaternary is the responsibility of the
IUGS International Commission on Stratigraphy’s (ICS) Subcommission on Quaternary Stratigraphy
(SQS), in partnership with the International Union for Quaternary Research’s (INQUA) Commission
on Stratigraphy and Chronology (SACCOM). Previous versions of the chart (see website1) were
published as Gibbard et al. 2004, 2005 and Gibbard & Cohen, 2008.

Chronostratigraphy and the base of the Quaternary
The timescale is based on the internationally-recognised formal chronostratigraphic/geochronologic
subdivisions of time: the Phanerozoic Eonathem/Eon; the Cenozoic Erathem/Era; the Quaternary
System/Period; the Pleistocene and Holocene Series/Epoch, and finally the Early/Lower, Middle,
Late/Upper Pleistocene Subseries/Subepoch. At present the Subseries (Subepoch) divisions of the
Pleistocene are not formalised.  Series, and thereby systems, are formally-defined based on Global
Stratotype Section and Points (GSSP) of which two divide the Quaternary System into the Holocene
and Pleistocene Series. The formal base of the Pleistocene, as ratified in 2009, coincides with a GSSP
at Monte San Nicola in southern Italy, marking the base of the Gelasian Stage (Rio et al., 1994, 1998).
The Gelasian GSSP at 2.58 Ma replaces the previous Pleistocene base GSSP (~1.8 Ma, defined at
Vrica, southern Italy), following 60 years of discussion in international stratigraphic commissions and
congresses. However, the latter continues as the GSSP for the base of the Calabrian Stage. The chart
extends to 2.7 million years to include the very end of the preceding Piacenzian Stage of the Pliocene
Series.

Since 1948 there has been a consensus that the boundary should be placed at the first evidence of
climatic cooling of ice-age magnitude.  This was the original basis for placing the boundary at ~1.8 Ma
in marine sediments at Vrica in Calabria, in Italy (Aguirre & Pasini, 1985).  It is now known that a
major cooling occurred earlier, at c. 2.55 million years (Cita, 2008), and even earlier cooling events are
known from the Pliocene. The closure of Central American Seaways between the Pacific and Atlatnic
ocean, in three steps starting 3.2 Ma, significantly restructured oceanic and atmospheric circulation on
the Northern Hemisphere, causing increased high latitude precipitation, freshening of the Arctic Ocean
and increased sea-ice cover amplifying cooling through albedo feedbacks (Bartoli et al., 2005; Lunt et
al., 2007; Sarnthein et al., 2009). Fully completed Panama Isthmus closure by 2.7 Ma is believed to
explain the palaeoenvironmental transitions observed at the Pliocene-Pleistocene boundary and to have
culminated in the Quaternary glacial-interglacial oscillating climate mode. Since its definition at 1.8
Ma there has been strong pressure for the basal Quaternary / Pleistocene boundary to be moved
downwards to better reflect the initiation of major global cooling (Pillans and Naish 2004; Gibbard et
al. 2005; Bowen & Gibbard 2007), effectively corresponding to the Gauss / Matuyama magnetic Chron
boundary (e.g. Partridge, 1997; Suc et al., 1997). See also: Ogg & Pillans (2008); Head et al. (2008);
Lourens (2008); Gibbard & Head (2009ab) and Gibbard et al. (2009).

Pleistocene GSSPs
Formal GSSPs for the Pleistocene Subseries will be proposed in the near future. The INQUA
Commission on Stratigraphy/ICS Working Group on Major Subdivision of the Pleistocene agreed to
place the Early/Lower - Middle boundary at the Brunhes / Matuyama magnetic reversal Chron
boundary (Richmond, 1996). A stratotype locality has yet to be identified, but three candidate sections
are being considered by an ICS Working Group (Head et al., 2008). Following recent re-evaluation,
the Middle – Late/Upper boundary is placed, following historical precedent in NW Europe, at the
Saalian-Eemian Stage boundary. The former is positioned at the basal-boundary stratotype of the
Eemian in the Amsterdam-Terminal borehole, the Netherlands (Gibbard, 2003; Litt & Gibbard, 2008).
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The Holocene is generally regarded as having begun 10,000 radiocarbon years before 1950 AD, or
11.7k calendar years before 2000 AD (see Wolff, 2008). This boundary has been defined as a Global
Stratotype Section and Point (GSSP) in in the North-GRIP ice core of the Greenland Ice-Core Project
(NGRIP: Rasmussen et al., 2006; Walker et al., 2008, 2009; Hoek, 2008). Auxiliary stratotypes are
also defined, for example, in an annually-laminated lake sequence in western Germany (Litt et al.,
2001).

Marine stage / zone divisions
Isotope studies from the bottom sediments of the world’s oceans have indicated that as many as 52
cold and interspersed warm climate periods, often referred to as glacials and interglacials, occurred
during the last 2.6 million years.  In contrast to the deep sea, continental evidence is so incomplete and
regionally variable that terrestrial glacial-interglacial stratigraphies must refer to the ocean record for a
global chronological foundation.

Here the deep-sea based, climatically-defined chronostratigraphy is taken from oxygen isotope data
collected and processed by Crowhurst (2002), updated Tzedakis et al. (2006). It is plotted against the
magnetostratigraphic time scale prepared and modified from Funnell (1996). The curve plots depict
_18O (the ratio of 18O versus 16O) in the tests of fossil benthonic (ocean-floor dwelling) foraminifera.
Shifts in this ratio are a measure of global ice-volume, which is dependent on global temperature and
which determines global sea-level. Planktonic foraminifera and calcareous nannoplankton provide an
alternative biostratigraphical means of subdivision of marine sediments. The micropalaeontological
zonation is taken from Berggren et al. (1995).

‘Standard stage’ (‘super-stage’) global divisions
The desire to divide Quaternary/Pleistocene time into ‘standard stages’, that is units of approximately
the same duration as those in the pre-Quaternary time (i.e. Paleogene, Neogene), has been advocated
on occasions. The only succession that has been divided in this way is the shallow marine sequence in
the Mediterranean region, especially in southern Italy, based principally on faunal and protist
biostratigraphy.  For various reasons the scheme was considered unsatisfactory for use beyond this
region. Renewed investigation in recent years has led to the proposal of units based on
multidisciplinary investigation. The Italian shallow marine stages are derived from Van Couvering
(1997) modified by Cita et al. (2006). In view of their duration, covering multiple climate cycles and
periods for which regional stage units of markedly shorter duration have been defined, these ‘standard
stages’ are considered as ‘super-stages’.

Early–Middle Pleistocene transition (‘mid-Pleistocene revolution’)
The chart shows the time between c. 1.2 and 0.5 Ma to have been a transition period in which low-
amplitude 41-ka obliquity-forced climate cycles of the earlier Pleistocene were replaced progressively
by high-amplitude 100-ka cycles.  These later cycles are indicative of slow ice build-up and subsequent
rapid melting, and imply a strongly non-linear forced climate system compared to before.
accompanied by substantially increased global ice volume during glacials after 940 ka. The Early-
Middle Pleistocene transition, through the increased severity and duration of cold stages, had a
profound effect on the biota and the physical landscape, especially in the northern hemisphere (Head &
Gibbard 2005). Orbital and non-orbital climate forcing, palaeoceanography, stable isotopes, organic
geochemistry, marine micropalaeontology, glacial history, loess–palaeosol sequences, pollen analysis,
large and small mammal palaeoecology and stratigraphy, and human evolution provide a series of
discrete events is identified from Marine Isotope Stage (MIS) 36 (c. 1.2 Ma) to MIS 13 (c. 540–460
Ma). Of these, the cold MIS 22 (c. 880–870 ka) is the most profound. On this basis Head & Gibbard
(2005) and Head et al. (2008), following earlier suggestions (e.g. Richmond 1996), concluded that on
practical grounds the Matuyama–Brunhes palaeomagnetic Chron boundary (mid-point at 773 ka, with
an estimated duration of 7 ka; within MIS 19, Channell et al. 2004) is the best overall point for
establishing the Early–Middle Pleistocene Subseries boundary.

Major continental records: Antarctic ice, Chinese Loess, Lake Baikal
Two plots of isotope measurements from Antarctic ice-cores are shown. The first is the 420 ka-long
plot from the Vostok core and shows atmospheric δ18O (Petit et al. 1999), determined from gas bubbles
in the ice. This atmospheric δ18O is inversely related to δ18O measurements from seawater and
therefore is a measure of ice-volume. It can also be used to separate ice volume and deepwater
temperature effects in benthic foraminiferal δ18O measurements. The deuterium measurements (δD) for
the last 800 ka are from the 3.2 km deep EDC core in Dome C (EPICA community members, 2004;



Jouzel et al., 2007). They come from samples of the ice itself and give a direct indication of Antarctic
surface palaeotemperature.

For the Chinese loess deposits the chart shows the sequence of palaeosols (units S0 to S32) for the
Jingbian site in northern China (Ding et al., 2005). High values of magnetic susceptibility indicate
repeated episodes of weathering (soil formation), predominantly in interglacials with relative strong
summer monsoon. In intercalated strata (units L1 to L33; accumulated during glacials) the proportion
of coarser grains (grains > 63 _m, % dry weight) is a signal of progressive desertification in Central
Asia. The magnetic and grain-size data is plotted on the Chinese Loess Particle Time Scale (Ding et
al., 2002). Alternating loess-palaeosol sequence accumulation throughout NE China coincides with the
begin of the Pleistocene and buries the more intensively weathered Pliocene ‘Red Clay’ Formation (An
Zhisheng et al., 1990).

The Siberian Lake Baikal provides a bioproductivity record from the heart of the world’s largest
landmass, an area of extreme continental climate. High concentrations of biogenic silica indicate high
aquatic production during interglacials (i.e., lake diatom blooms during ice-free summer seasons). The
composite biogenic silica record from cores BDP-96-1, -96-2 and -98 is plotted on an astronomically
tuned age-scale (Prokopenko et al., 2006). The composite record extends well beyond the top of the
Olduvai reversal, a tuned age-scale for this part of the series is in preparation.

Regional stage/substage divisions
The continuous sequences, above, provide the comparison for a selection of continental and shallow
marine stage-sequences from around the world reconstructed from discontinuous sediment successions.
Solid horizontal lines on the plots indicate observed boundaries, where no lines separate stages,
additional events may potentially be recognised in the future.

The NW European stages are taken from Zagwijn (1992) and De Jong (1988). The British stages are
taken from Mitchell et al. (1973); Gibbard et al. (1991) and Bowen (1999).  The Russian Plain stages
are from the Stratigraphy of the USSR: Quaternary System (1982, 1984), Krasnenkov et al. (1997),
Shik et al. (2002), Iossifova (pers. comm.) and Tesakov (pers. comm). In addition, the Russian
Pleistocene is also frequently divided into the Eopleistocene, equivalent to the Early Pleistocene
Subseries, and the Neopleistocene, equivalent to the Middle and Late Pleistocene Subseries.  The
North American stages are taken from Richmond (unpublished). The New Zealand stages are from
Pillans (1991) and Beu (2004).
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